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a b s t r a c t

Gorham’s Cave is located in the British territory of Gibraltar in the southernmost end of the Iberian
Peninsula. Recent excavations, which began in 1997, have exposed an 18 m archaeological sequence that
covered the last evidence of Neanderthal occupation and the first evidence of modern human occupation
in the cave. By applying the Mutual Climatic Range method on the amphibian and reptile assemblages,
we propose here new quantitative data on the terrestrial climatic conditions throughout the latest
Pleistocene sequence of Gorham’s Cave. In comparison with current climatic data, all mean annual
temperatures were about 1.6e1.8 �C lower in this region. Winters were colder and summers were similar
to today. Mean annual precipitation was slightly lower, but according to the Aridity Index of Gaussen
there were only four dry months during the latest Pleistocene as opposed to five dry months today
during the summer. The climate was Mediterranean and semi-arid (according to the Aridity Index of
DantineRevenga) or semi-humid (according to the Aridity Index of Martonne). The atmospheric tem-
perature range was higher during the latest Pleistocene, mainly due to lower winter temperatures. Such
data support recent bioclimatic models, which indicate that high rainfall levels may have been a signif-
icant factor in the late survival of Neanderthal populations in southern Iberia. The Solutrean levels of
Gorham’s Cave and climate records from cores in the Alboran Sea indicate increasing aridity from Marine
Isotope Stage (MIS) 3-2. Because Neanderthals seem to have been associated with woodland habitats, we
propose that lessening rainfall may have caused the degradation of large areas of forest and may have
made late surviving Neanderthal populations more vulnerable outside southern refuges like the Rock of
Gibraltar.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

The Neanderthal extinction and the possible implication of cli-
mate has long been the subject of intense debate (Stringer et al.,
2003; Carrión, 2004; Finlayson et al., 2006; Tzedakis et al., 2007;
among many others). Established views of the superiority of Ana-
tomically Modern Humans (AMH) over Neanderthals (as the cause
of the survival of the first and the extinction of the latter) are under
All rights reserved.
scrutiny as numerous works show that Neanderthals were capable
of behavior that is now regarded as modern. The extinction of the
Neanderthals appears to have been a drawn-out, climate-related
affair (Finlayson and Carrión, 2006; Müller et al., 2011). Neander-
thals inhabited temperate Europe for more than 300,000 years and
are thought to have disappeared between 40,000 and 28,000 years
ago, around the time that the first modern humans arrived in
Europe during a period of significant climatic oscillation (Finlayson,
2009). The Neanderthals are thought to have survived longest in
southerly European regions such as the Balkans, Italy and Iberia
(Carrión et al., 2011; Dennell et al., 2011).
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Figure 1. Left: Location of Gorham’s Cave in southern Iberian Peninsula and reconstruction of the Gibraltar Peninsula during the Last Glacial Maximum, with sea level ca. 100 m
below present-day position (modified from Carrion et al., 2008). Right-Top: General plan of Gorham’s Cave showing the location of the excavated hearth site (H) and detail of
excavated area with the hearth site (light grey and black). Right-Bottom: Stratigraphy of the excavated inner part of Gorham’s Cave described in text. Numbered white dots indicate
the positions of charcoal samples used for 14C AMS dates. The white rectangle marks the position of the Mousterian hearth site. Hatched lines indicate the hearth’s radius of
influence indicated by charcoal concentrations. Modified from Finlayson et al., 2006.
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Interest in the Rock of Gibraltar in terms of palaeontology and
paleoanthropology has been mentioned as early as 1798 by the
Major Imrie (1798). The significance of the archaeological and
paleontological record of Gibraltar’s caves was first reported in the
mid-nineteenth century with the discovery of a Neanderthal cra-
nium at Forbes’ Quarry in 1848 (Stringer, 2000a), and the subse-
quent discovery of a Neanderthal child cranium in 1926 at Devil’s
Tower (Garrod et al., 1928). Gorham’s Cave was discovered by A.
Gorham in 1907. Its long human occupation was first brought to
light in the 1950s (Waechter, 1951, 1964), with work recommencing
at this site in the early 1990s (Stringer et al., 1999; Stringer, 2000b).
Research undertaken at Gorham’s Cave over the past decade has
confirmed that southern Iberia was an important glacial refuge for
Neanderthal populations (see various references in Stringer, 2000a;
Finlayson et al., 2006, 2008; Carrión et al., 2008, 2011). Archaeo-
logical evidence suggests that Neanderthals inhabited the cave
possibly as late as 28,000 years ago (Finlayson et al., 2006). The last
Neanderthals that occupied Gorham’s Cave had access to a diverse
community of plants and vertebrates on the sandy plains, open
woodland and shrubland, wetlands, cliffs and coastal environments
surrounding the site. According to Finlayson et al. (2006) and
Carrión et al. (2008), such ecological diversity might have facili-
tated their long survival. The Neanderthals persisted in
Mediterranean environments that had acted as glacial refuge for
many species throughout the Quaternary period.

In fact, southern Iberia is widely regarded as having been one of
themost significant glacial refuges in Europe during the Pleistocene
period (Hewitt, 2000; Carrión et al., 2003; Gómez and Lunt, 2007;
O’Regan, 2008; Carrión and Leroy, 2010; González-Sampériz et al.,
2010; Rodríguez-Sánchez et al., 2010; Jennings et al., 2011). Fac-
tors that characterized southern Iberia as a glacial refuge were its
southerly location, topographic heterogeneity, extensive coastlines,
favorable weather patterns and proximity to Africa (Finlayson,
1999). Because there is some contradiction in the persistence of
thermophilous fauna and flora in southern Iberia during the
Pleistocene, and the possibility of climate deterioration as being the
cause of the disappearance of the last Neanderthals, the aim of this
paper is to present new quantitative data on the terrestrial climatic
conditions throughout the latest Pleistocene sequence of Gorham’s
Cave using herpetofaunal assemblages.

Geological and chronological setting

The Rock of Gibraltar is a north-south orientated peninsula situ-
ated in the southernmost part of the Iberian Peninsula (36�N 05�W),
21 km from the coast of North Africa (Morocco) andwith a total area



Figure 2. Some amphibians and squamates reptiles from Gorham’s Cave. A: Pleurodeles waltl, trunk vertebra, right lateral view; BeC: Triturus cf. pygmaeus, B: Trunk vertebra, dorsal
(B1), ventral (B2) and left lateral (B3) views, C: Humerus, lateral (C1) and ventral (C2) views; DeE: Discoglossus sp., D: Sacrum, dorsal view, E: Right ilium, lateral (E1) and posterior
(E2) views; FeM: Pelobates cultripes, F: Right maxilla, lateral view, G: Fused frontoparietals, dorsal view, H: sphenethmoid, dorsal (H1) and anterior (H2) views, I: Right squamosal,
lateral view, J: Third vertebra, dorsal (J1) and anterior (J2) views, K: Left scapula, dorsal view, L: Left humerus, ventral view, M: Left ilium, lateral (M1) and medial (M2) views; N:
Hyla sp., left ilium, lateral view; O: Chalcides striatus, left dentary, medial view; PeQ: Acanthodactylus erythrurus, P: Fused frontals, dorsal view, Q: Right dentary, medial view; R:
Rhinechis scalaris, trunk vertebra, ventral (R1) and posterior (R2) views; S: Natrix maura, trunk vertebra, posterior (S1) and right lateral (S2) views; T: Vipera latastei: Trunk vertebra,
left lateral (T1) and posterior (T2) views. All scales ¼ 2 mm.
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of approximately 6 km2, a length of 5.2 km and a maximum natural
widthof 1.6 km(Rodriguez-Vidal et al., 2004, 2007; C. Finlayson et al.,
2006, 2008,G. Finlaysonet al., 2008) (Fig.1).Gorham’s Cave is located
at the foot of this Gibraltar promontory, oriented to the southeeast
(36� 070N 5� 210W) and forms part of a complex of four caves (Ben-
nett, Vanguard, Hyaena and Gorham’s). Research into the geo-
morphological evolution of the Rock by Rodriguez-Vidal et al. (2004,
2007) has provided the framework for the reconstruction of the
landscape at Gibraltar during the Quaternary. These authors have
provided a detailed analysis of Gibraltar’s sedimentary record and its
erosional landforms, showing that the Rock evolved through a com-
bination of tectonic uplift and eustatic sea level change.

The excavations in the inner part of the cave, which had not been
systematically excavated previously, commenced in 1997, exposing
an area of 29m2 of cavefloor and producing a stratigraphywith four
main occupation levels (C. Finlayson et al., 1999, 2006, 2008; G.
Finlayson et al., 2008) (Fig. 1). Levels I and II are thin lenses and
correspond to Phoenician andNeolithic horizons, respectively. Level
III (mean depth of 62 cm) is sub-divided into a basal Solutrean (IIIb)
and an upper Magdalenian (IIIa) horizon and consists of sandy
sediment with dark brown clay in a sandy matrix. It has a strong
organic component that includes discrete lumps of charcoal.

Another distinctive feature of this level is a layer of fallen
angular limestone and speleothem fragments, which runs along the
middle of this horizon and separates the Solutrean and Magdale-
nian occupational levels. Level IV (mean depth of 41 cm, but its base
has not been reached) corresponds to a Mousterian horizon and is
composed of a beige-colored pure clay horizon with an abundance
of discrete lumps of charcoal and a hearth (C. Finlayson et al., 2006,
2008; G. Finlayson et al., 2008).

The archaeological remains associated with Level III consist of
240 Upper Palaeolithic artefacts using predominantly flint, chert
and some quartzites as raw material. In contrast, Level IV contains
103 stone tools attributed to the Mousterian technocomplex also
made using similar raw materials (Finlayson et al., 2006; Giles
Pacheco et al., 2012).

The chronology of the Gorham’s Cave sequence is based on
a stratigraphically-coherent series of AMS radiocarbon dates
obtained from charcoal fragments. Level III is dated between ca.
12,640 and 10,880 BP (before present) for the Magdalenian horizon
(level IIIa), and between ca. 18,440 and 16,420 BP for the Solutrean
horizon (level IIIb). Level IV is dated between ca. 32,560 and 23,780
BP (Finlayson et al., 2006).

Material and methods

Fieldwork and sorting

The herpetofauna fossil remains used for this study consist of
disarticulated bone fragments collected by water-screening during
the 1999e2005 excavation campaigns at Gorham’s Cave (Fig. 2). All
of the sediment was water-screened using superimposed 10, 5 and
0.5mmmesh screens. The studied sample includedmore than 2000
fragments, representing 24 different taxa (Table 1). Tortoise remains
and some larger bones have been collected on site fromexcavations.

Systematic attribution

Material from the 1999 to 2005 excavations was picked by Claire
Valarino and identified by C. Gleed-Owen (Gleed-Owen, 2001;
Gleed-Owen and Price, 2012). Since 2009, H.-A. Blain resumed
study of Gibraltar herpetofaunal remains and identified part of the
remaining material from Gorham’s 2005 excavation campaign
picked by J.M. López-García. The bones were identified following
the general criteria given by Bailon (1991, 1999), Haller-Probst
(1997), Holman (1998), Ratnikov and Litvinchuk (2007) and
Bailon et al. (2011) for amphibians, and Szyndlar (1984, 1991a, b),
Barbadillo (1989), Bailon (1991), Barahona Quintana (1996),
Barahona and Barbadillo (1997), Hervet (2000), Caputo (2004) and
Blain (2005, 2009) for reptiles. Comparisons were drawn using the
dry skeletal collections of theMuseo Nacional de Ciencias Naturales
(MNCN, Madrid, Spain) and our personal collections.

Climatic reconstruction

Paleoclimatic interpretations are based on the presence of her-
petofauna species fromeach level. TheMutual Climatic Range (MCR)
method (see Blain et al., 2009) was used to quantify palae-
otemperatures and palaeoprecipitation. We simply identified the
geographic region (divided into 10� 10 kmUTM squares) where all
of the species present in the locality or in a stratigraphical level
currently live. Careful attention has been paid so that real current
distribution corresponds to potential ecological/climatic distribu-
tion, and is not strongly affected by other limiting or perturbing
parameters, such as urbanization, landscape anthropization, pre-
dation, competitionwith other species, etc. In the case of the tortoise
Testudo hermanni, for example, its current distribution in the Iberian
Peninsula is strongly reduced by human activities and does not
correspond to its potential climatic/environmental range (e.g.,
Llorente et al., 1995). Consequently T. hermanni has not been inclu-
ded in the MCR, although results have been contrasted with the
climatic requirements of its geographically nearest extant repre-
sentatives (mean annual temperature higher than 14 �C and mean
annual precipitation lower than 700 mm; Llorente et al., 2004).

Analysis of the MCR in each level is based on the distribution
atlases of the Iberian herpetofauna (Godinho et al., 1999;
Pleguezuelos et al., 2004). Climatic parameters have been estimated
for each 10� 10 km UTM square, using various climatic maps of the
Iberian Peninsula (Ninyerola et al., 2005). A total of 26 climatic pa-
rameters have been calculated for this study (Table 2).

For comparison with current climatic data, we extrapolated the
climatic values (1970e2001) near the entrance of Gorham’s Cave
from the Iberian Peninsula climatic database (Ninyerola et al., 2005).

To measure aridity, we used Gaussen, DantineRevenga and De
Martonne indices. The Gaussen Index (P < 2 � T) considers that
a month is dry if the pluviometric amount in a month (P), consid-
ered in mm, is lower than two times the value of the average
temperature in �C of that month (T). The Index of DantineRevenga
(100 � MAT/MAP) and the Aridity Index of Martonne MAP/
(MAT þ 10) are calculated using the variables of mean annual
temperature (MAT) and mean annual precipitation (MAP).

Results

Amphibian and reptile assemblages

The amphibian and reptile bone remains include more than
2000 elements, representing at least 24 taxa, including newts,
toads, frogs, tortoises, turtles, lacertid and scincid lizards, geckos,
and several snakes. In its entirety, the Gorham’s Cave sequence
documents a large part of the high herpetofaunal diversity
observed today in Gibraltar (Table 1; Edgar, 2010) and neighboring
parts of Andalusia (Pleguezuelos et al., 2004). Nevertheless, some
taxa currently present in Gibraltar are not represented in the Gor-
ham’s fossil record, such as marine turtles, Testudo graeca, Tra-
chemys scripta (introduced from North America), Blanus mariae,
Chamaeleo chamaeleon, Hemidactylus turcicus and Podarcis hispan-
ica. Such an absence may be explained by taphonomic or envi-
ronmental reasons (marine turtles, B. mariae and P. hispanica) or
may be by the fact that some species are known or thought to be



Table 1
List of the amphibians and reptiles currently represented in Gibraltar (according to Edgar, 2010) and their distribution as fossils in each level from Gorham’s Cave.

Species name Common name Today IIIa IIIb IV

Amphibians Pleurodeles waltl Sharp-ribbed Salamander i x x
Triturus pygmaeus Pygmy Marbled Newt cf. cf. cf.
Lissotriton sp. Indeterminate Newt x x x
Discoglossus sp. Indeterminate Painted Frog x
Alytes sp. Indeterminate Midwife Toad x
Pelobates cultripes Western Spadefoot e x x x
Bufo spinosus Common Toad i x x x
Epidalea calamita Natterjack Toad x x x x
Hyla meridionalis Stripeless Tree Frog i sp.
Pelophylax perezi Perez’s Marsh Frog i

Reptiles Caretta caretta Loggerhead Turtle x
Chelonia mydas Green Turtle x
Dermochelys coriacea Leathery Turtle x
Testudo hermanni Hermann’s Tortoise x x
Testudo graeca Spur-thighed Tortoise i
Emys orbicularis European Pond Terrapin i indet.
Mauremys leprosa Stripe-necked Terrapin i
Trachemys scripta Red-eared Slider i
Blanus mariae Iberian Worm Lizard x
Chamaeleo chamaeleon Chameleon i
Chalcides bedriagai Bedriaga’s Skink x x
Chalcides striatus Three-toed Skink x x
Hemidactylus turcicus Turkish Gecko x
Tarentola mauritanica Moorish Gecko x x x
Acanthodactylus erythrurus Spiny-footed Lizard e x x
Timon lepidus Ocellated Lizard x x x x
Podarcis hispanica Iberian Wall Lizard x
Psammodromus algirus Algerian Sand Racer x sp.
Coronella girondica Southern Smooth Snake x x x x
Hemorrhois hippocrepis Horseshoe Whip Snake x x x x
Rhinechis scalaris Ladder Snake x x x x
Malpolon monspessulanus Western Montpellier Snake x x x
Macroprotodon brevis False Smooth Snake x x
Natrix maura Viperine Snake e x x x
Natrix natrix Grass Snake x x
Vipera latastei Lataste’s Viper x x x x

(x): presence; (i): introduced; (e): now extinct.
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introduced in the Iberian Peninsula in historic times (like
H. turcicus, T. graeca, T. scripta and Ch. chamaeleon). Conversely,
some species are thought to be recently introduced by humans in
Gibraltar but are well represented in Gorham’s (Pleurodeles waltl,
Bufo spinosus, Hyla and unidentified terrapin). In addition, a higher
diversity during Pleistocene times is documented by the presence
of two newts (Triturus cf. pygmaeus and Lissotriton sp.),Discoglossus,
Alytes, Pelobates cultripes, T. hermanni, Acanthodactylus erythrurus
and Natrix maura. This higher diversity, aside from the disturbance
caused today by the urbanization, suggests that Gibraltar and the
southernmost part of the Iberian coasts really acted as a refuge
during the latest Pleistocene for both strictly thermophilous Med-
iterranean taxa (Discoglossus, P. cultripes, T. hermanni, and
A. erythrurus among other) and some western ‘Atlantic’ taxa (Tri-
turus cf. pygmaeus and Lissotriton sp.).

Climate reconstruction

The Gibraltar region features a Mediterranean climate with mild
winters and warm and dry summers. Two main prevailing winds
affect the climate of Gibraltar throughout the year: an easterly wind
known as Levante (usually late summer, autumn and early spring)
causes humid weather and warmer sea temperatures, while the
westerly Poniente brings in cooler air and lowers the sea temper-
ature. Precipitation, though concentrated in the autumn and spring,
can be observed throughout the year. TheMAT is 17.9 �C andMAP is
798 mm (Ninyerola et al., 2005). The average difference between
the warmest (August) and coldest (January) months (MTW and
MTC respectively), is 13.1 �C. The arid period is particularly long,
lasting from May to September (five consecutive months).
Past climatic parameters were obtained from the use of theMCR
method on the fossil herpetofauna assemblages (Table 2). Overlaps
obtained correspond to various areas within the Iberian Peninsula
as represented in Fig. 3. Climatograms have been made to better
visualize the monthly evolution of temperature and precipitation,
and respecting the scales T ¼ 2 � P to evaluate directly the Gaussen
Index (Fig. 4). Our climatic interpretation is synthesized in Table 3.

The overlap gives respectively 67 UTM squares for level IV, 20
squares for level IIIb and 22 squares for level IIIa (Table 2; Fig. 3).
These squares occur in central-western and south-western Iberia
for levels IIIa and IIIb, but for level IV, the overlap is extended and
reaches the Catalan Mediterranean seashore at the north (Fig. 3).
MAT ranges from 16.1 to 16.3 �C, and MAP from 685 to 763 mm
(Table 2). The climate was warm with a high atmospheric tem-
perature range. Summer was rather warmer, and winter was
temperate. Rainfall was low and its distribution mainly irregular
throughout the year (with its highest amounts during winter and
spring), with four drymonths during the summer and early autumn
(from June to September) with rainfall lower by 40 mm. Aridity
indexes suggest a semi-arid ombroclimate (Fig. 4; Table 3).

In comparison with current climatic data, all MCR-estimated
MATs are about 1.6e1.8 �C lower than today. Similarly, winters
were colder (difference for MTC ¼ 3.3e3.9 �C) and summers were
similar in warmth to today. MAP was slightly lower (35e113 mm)
than today, but according to the Aridity Index of Gaussen there
were only four dry months during the Late Pleistocene, as opposed
to five dry months currently. The climate remained Mediterranean
and semi-arid (according to the Aridity Index of DantineRevenga)
or semi-humid (according to the Aridity Index of Martonne).
Finally, continentality (or atmospheric temperature range) was
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higher during the Late Pleistocene than today, mainly due to lower
winter temperatures.

Discussion

During MIS3eMIS2 up to the onset of the Last Glacial Maximum
(LGM) (60e24 ka [thousands of years ago]), the climate is thought
to have been rapidly fluctuating, and was harsher than the present
day. The climate then became cooler and drier but more stable
during the LGM (24e18 ka) (Fletcher and Sánchez-Goñi, 2008).
According to Sánchez-Goñi and d’Errico (2005), in the Mediterra-
nean region during the cold episodes of the latest Pleistocene, MAP
was 400 mm lower and MTC were 6e13 �C lower than present.
However, during the temperate phases, the pollen-based estima-
tions suggest that MAP and MTC were similar to today. During the
coldest episodes of MIS3 and MIS2, the occurrence of Ibero-North
African xerothermic scrub (Maytenus, Ziziphus, Periploca, With-
ania, Osyris, among others) was recorded in coastal Murcia (Walker
et al., 2011), Málaga (Fernández et al., 2007) and the southernmost
extreme in the Gibraltar Peninsula (Carrión et al., 2008). The most
striking feature is the broad occurrence of tree populations
throughout the whole region, including continental territories.
Genera like Corylus, Quercus, Pinus (e.g., Pinus pinaster), Fraxinus,
Alnus, Betula, Castanea, Taxus, Abies, Fagus, Salix, Sorbus, Juglans,
Olea, Pistacia andUlmus, among others, are common components of
Pleistocene pollen assemblages throughout the Iberian Peninsula
(Carrión et al., 2003, 2008, 2011; González-Sampériz et al., 2010).

Climate in Gorham’s Cave

The large terrestrial and marine mammal assemblages at Gor-
ham’s Cave include Cervus elaphus, Capra pyrenaica, Equus caballus
and Monachus monachus, all of which show conclusive evidence of
anthropic predation, including cut-marks, breakage, and dis-
articulation, which was further substantiated by the absence of
carnivore damage or post-depositional taphonomic modifications.
Both faunal assemblages from Levels III and IV show no significant
differences in prey species present, and indicate mild and relatively
humid Mediterranean conditions, similar to that found in southern
Iberia today (Stringer et al., 2008; Riquelme Cantal and Cortés
Sánchez, 2009). This is further substantiated by the herpetofauna,
avifauna, pollen and charcoals analyses, which show that the
Pleistocene landscape outside Gorham’s Cave was dominated by
a thermo-mesomediterranean subhumid profile with the existence
of multiple biotopes (Gleed-Owen, 2001; Sánchez-Marco, 2004;
Finlayson and Carrión, 2006; Finlayson et al., 2006; Carrión et al.,
2008; Gleed-Owen and Price, 2012). The paleobotanical findings
of meso- and thermo-Mediterranean plant species such as Pinus
pinea, Maytenus senegalensis, Myrtus communis, Olea europea, Pis-
tacia lentiscus,Withania frutescens and Calicotome in the Pleistocene
pollen record of Gibraltar (Carrión et al., 2008) support this
premise. Greater cooling would have led to the disappearance of
thermo-Mediterranean temperatures, something that cannot have
happened for any length of time in the past, because plants and
terrestrial animals adapted solely to this thermotype survive in the
region today (Hewitt, 2000; Finlayson, 2006). Consequently,
Jennings et al. (2011) suggested that MATs in the southern Iberian
Peninsula lowered by only 2.0 �C during the cold-dry phase of the
latest Pleistocene.

However, some proxies indicate that the climate may have been
harsher during the latest Pleistocene in Gibraltar. Analysis of Mg/Ca
and oxygen isotope (d18O) ratios in a suite of fossil limpet Patella
shells from Gorham’s Cave showed that seaesurface temperature
seasonality was greater during the last glacial by approximately
2 �C as a result of a greater cooling (Ferguson et al., 2011). Also, MCR



Figure 3. Overlaps of the current distribution of the taxa represented as fossils in each level from Gorham’s Cave and living today in Gibraltar. Principal grid comprises
100 � 100 km UTM squares.
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on the small mammal assemblages from Gorham’s Cave suggested
lower MATs (around 4 �C lower than present temperatures) and
higher MAP than at present (23e75 mm). Summer was temperate
(0.2 �C lower than today) andwinter was harsher (8.7 �C lower than
today) (López-García, 2008, 2011; López-García et al., 2011b).
Similar climate values have been estimated from small vertebrate
analysis in other sites such as Sala de las Chimeneas (Maltravieso
Caves, southwestern Spain; Bañuls Cardona et al., 2012). For Gor-
ham’s Cave, such analysis is principally based on the presence of
two shrews that currently only live in northern Spain (‘Atlantic’
mid-European chorotype): Sorex minutus and Sorex gr. coronatus-
araneus (López-García, 2008, 2011; López-García et al., 2011b).
Although MCR-estimated climatic parameters using herpetofauna
assemblages do not imply such harsh temperatures, the presence of
‘Atlantic’ taxa (Triturus cf. pygmaeus, Lissotriton sp. and Chalcides
striatus) accords well with the concept that Gibraltar acted as
a refuge for northern Atlantic species too during the latest Pleis-
tocene. Conversely, the predominance of strictly Mediterranean
fauna and flora in Gorham’s Cave clearly suggests that tempera-
tures were not very harsh, despite winters being colder than today.
This is also in accordance with the concept of ‘refugia within ref-
ugia’ (Gomez and Lunt, 2007).

In conclusion, herpetofaunal-based MCR-estimated climatic
parameters fit quite well with other proxies, with estimated MATs
about 1.6e1.8 �C lower than today. This is consistent with the
persistence of terrestrial animals adapted solely to the thermo-
Mediterranean thermotype in Gorham’s Cave, as stressed by
Jennings et al. (2011). In a similar way to small-mammal-based
MCR-estimated climatic parameters, winters were colder and
summers were similar to today. MAP was slightly lower (35e
113 mm) than today, but according to the Aridity Index of Gaus-
sen there were only four dry months during the Late Pleistocene, as
opposed to five currently, suggesting that the climate remained
Mediterranean and semi-humid (according to the Aridity Index of
Martonne). Our data suggest increased continentality during the
latest Pleistocene (by around 3.5e4.6 �C), which is consistent with
the greater seaesurface temperature seasonality estimated by
Ferguson et al.’s (2011) analysis of Mg/Ca and d18O from limpets.

Climate in southern Iberian refuge and the extinction of the
Neanderthals

What about the apparent contradiction in the persistence of
thermophilous fauna and flora in southern Iberian refuge and the
possibility of climate deterioration as being the cause of the dis-
appearance of the last Neanderthals? As stressed by Jennings et al.
(2011), the persistence of good rainfall levels may have been a sig-
nificant factor in the late survival of Neanderthal populations in
parts of southern Iberia. Even if the climatic fluctuations occurring
in northern Europe and northern Iberia seem to have been less
severe, in the southernmost part of the Iberian Peninsula Gorham’s
Cave records a slightly lower (�78 mm) level of rainfall in the So-
lutrean level IIIb (Fig. 4). Such a decrease in precipitation matches
pollen records (e.g., MD95-2043 located in the Alboran Sea;
Fletcher and Sánchez-Goñi, 2008; Carrión et al., 2012, Fig. 4) that
show a strong decrease in arboreal pollen from approximately 31 to
15 ka. The lowest arboreal pollen percentage corresponds to the
end of Heinrich Event 2, at approximately 24.5 ka (Fletcher and
Sánchez-Goñi, 2008). This is also supported by the geochemical
analyses of marine sediments from the Balearic basin (ODP Site



Figure 4. Comparison of Gorham’s climatograms obtained from the MCR analysis with the pollen (Core MD95-2043) and GISP2 oxygen isotope records (modified from Fletcher and
Sánchez-Goñi, 2008) and associated cultural events in Europe. For the pollen record, black area represents Mediterranean forest and grey area other arboreal taxa. Arrow indicates
the lowest arboreal pollen percentage at approximately 24.5 ka. Abbreviations: AMH: Anatomically Modern Humans; GIS: Greenland Interstadial; HE: Heinrich Event; LGM: Last
Glacial Maximum; MAT: Mean Annual Temperature; MAP: Mean Annual Precipitation. YD: Younger Drias.
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975; Jiménez-Espejo et al., 2007) showing that conditions in
southern Iberia were inhospitable (with MAT lowering about 4 or
6 �C compared with current temperatures) at approximately 24 ka
cal BP (thousands of years ago calibrated before present). Hence,
because the Neanderthals seem to have been associated with
woodland habitats (see for example López-García et al., 2008,
2011a,b; 2012a,b; Burjachs et al., 2012; among others), the
disappearance of large forest tracts may have made them vulner-
able, except in some small refuges in southern Iberia (e.g., the Rock
of Gibraltar). Extreme aridity pulse as cause of local extinction has
also been proposed by Shea (2008) for the Neanderthals of the
Levant at 45 ka. The implication of these extinction events is that
either the advantages of the coastal zone were not sufficient to
buffer against episodes of extreme climate, or that the favored



Table 3
Climatic interpretation of the climatograms obtained for the different levels of Gorham’s Cave.

Level IV Level IIIb Level IIIa Today

Temperature Mean annual
temperature

16.1 �C Warm 16.3 �C Warm 16.3 �C Warm 17.9 �C Warm

Atmospheric
temperature
range

16.9 �C High 17.7 �C High 16.6 �C High 13.1 �C Medium

Summer
temperature

2 months
> 22 �C

Warm 3 months
> 22 �C

Warm 2 months
> 22 �C

Warm 3 months
> 22 �C

Warm

Winter
temperature

MTC ¼ 8.6 �C Temperate MTC ¼ 8.0 �C Temperate MTC ¼ 8.0 �C Temperate MTC ¼ 11.9 �C Mild

Rainfall Mean annual
precipitation

763 mm Low 685 mm Low 709 mm Low 798 mm Low

Distribution
of rainfall

Fairly
regular

Winter Irregular Winter Irregular Winter Irregular Winter

Type of
precipitation

Rain Rain Rain Rain

Aridity Gaussen Index 4 Mediterranean 4 Mediterranean 4 Mediterranean 5 Mediterranean
Dantin-Revenga
Index

2.1 Semi-arid 2.4 Semi-arid 2.3 Semi-arid 2.2 Semi-arid

De Martonne
Index

29.2 Semi-humid 26.0 Semi-humid 27.0 Semi-humid 28.6 Semi-humid
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refugia contracted to an area too small to support viable
populations.

Conclusions

The aim of this paper was to propose new quantitative data on
the terrestrial climatic conditions throughout the latest Pleistocene
sequence of Gorham’s Cave using herpetofauna assemblages.

During the latest Pleistocene, the reconstructed climate was
warm with a high atmospheric temperature range. Summers were
warm and winters were temperate. Rainfall was lower, and its
distribution irregular throughout the year (highest during winter
and spring), with four dry months (June to September).

In comparison with current climatic data, all MCR-estimated
MATs were 1.6e1.8 �C lower. Winters were colder (difference
for MTC ¼ 3.3e3.9 �C) and summers similar to today. Total
rainfall was 35e113 mm lower than today, but according to the
Aridity Index of Gaussen there were only four dry months during
the Late Pleistocene compared with the five current months of
dryness during the summer. The climate remained Mediterra-
nean and semi-arid (according to the Aridity Index of Dantine
Revenga) or semi-humid (according to the Aridity Index of
Martonne). Finally, the atmospheric temperature range was
higher during the latest Pleistocene than today, mainly due to
lower winter temperatures.

Such data reinforce the theory that high rainfall levels were
a significant factor in the late survival of Neanderthals in southern
Iberia. Lower rainfalls registered in the subsequent level IIIa, in
agreement with pollen data and oxygen isotope records, suggest
that increasing aridity during MIS 2 may have caused the loss of
extensive forest tracts, thus making Neanderthals, if they were still
surviving in southerly refugia by this late stage, more vulnerable.
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