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Introduction
The Mediterranean Basin has extraordinarily high levels of plant 
species diversity (Blondel and Aronson, 1995; Médail and 
Diadema, 2009). Changes in the frequency, intensity and size of 

fires are altering landscapes and vegetation around the Mediter-
ranean Basin (Chergui et al., 2018; Fernandes et al., 2016; Kara-
vani et al., 2018; San-Miguel-Ayanz et al., 2013; Viedma et al., 
2017). The recent increase in large fires is connected to the inter-
action of climatic changes with rising fuel loads and fuel 
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Abstract
Fire regime changes are considered a major threat to future biodiversity in the Mediterranean Basin. Such predictions remain uncertain, given that fire 
regime changes and their ecological impacts occur over timescales that are too long for direct observation. Here we analyse centennial- and millennial-
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Iberia and compared these with charcoal-inferred fire regime changes. Event sequence analysis showed fire regime shifts to be significantly temporally 
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connectivity, which in turn stem from the combined effects of 
rural land abandonment, loss of traditional agro-pastoral burning 
practices and the spread of homogeneous Pinus and Eucalyptus 
plantations (Fernandes et  al., 2016; Fréjaville and Curt, 2015; 
Moreira et al., 2011; Pausas and Fernández-Muñoz, 2012). While 
some Mediterranean plants exhibit traits that enable post-fire 
recovery (Allen, 2008; Keeley et  al., 2011; Paula et  al., 2009; 
Tavşanoğlu and Pausas, 2018), some recent high-severity fire epi-
sodes have exceeded vegetation resilience and reduced recovery 
rates (Díaz-Delgado et al., 2002; Malak and Pausas, 2006; Puerta-
Piñero et al., 2012). Fire regime shifts are potentially critical for 
Mediterranean biodiversity (Keeley et  al., 2011; Paula et  al., 
2009; Pausas et  al., 2008). Given the rarity of long historical 
records of fire (Pausas and Fernández-Muñoz, 2012), it remains 
unclear whether recent changes in fire characteristics represent 
natural variability or regime shifts with major biodiversity 
implications.

Fire regime shifts occur over decades to millennia (Swetnam 
et al., 1999; Vannière et al., 2008; Whitlock et al., 2010), beyond 
the temporal scope of monitoring-based ecological studies (e.g. 
Capitanio and Carcaillet, 2008; Clemente et  al., 1996). Longer 
term perspectives are therefore needed to understand when a fire 
regime shift is occurring, to identify its causes and to predict its 
potential ecological impacts. Long-term ecological insights can 
be gained from the analysis of fossil pollen and sedimentary char-
coal. Both proxies are abundant in Holocene sediments and allow 
for replication through time and space. Pollen data, if sufficiently 
taxonomically resolved and compared with the vegetation at 
appropriate scales, can be linked to the floristic richness of the 
surrounding vegetation (Birks et  al., 2016; Felde et  al., 2016). 
Pollen data may also be used to estimate turnover, compositional 
change, species loss and resilience (Blarquez et  al., 2014a; 
Colombaroli et  al., 2009; Davies et  al., 2018; Giesecke et  al., 
2014; Seddon et al., 2015). Charcoal data are a critical proxy for 
several dimensions of past fire regimes (e.g. frequency and inten-
sity) and, when compared with past vegetation, palaeoclimatic or 
archaeological data, provide insights into the climatic, fuel–vege-
tation and human drivers of long-term fire regime change (Mar-
lon et al., 2016; Power et al., 2008; Roberts et al., this volume; 
Vannière et al., 2016, 2011).

Fire has played a key role in the landscape construction and 
the biodiversity heritage of the Mediterranean Basin (Bisculm 
et al., 2012; Colombaroli et  al., 2008; Colombaroli and Tinner, 
2013; Jouffroy-Bapicot et  al., 2016). Charcoal and pollen data, 
along with climatic inferences from isotopic and lake-level prox-
ies, have contributed to reconstruct a Mediterranean environmen-
tal history that is complex, enigmatic and much debated in 
climatic and anthropogenic terms (Berger et  al., 2016; Colom-
baroli et al., 2008; Kaltenrieder et al., 2010; Magny et al., 2007, 
2013; Mensing et al., 2018; Morellón et al., 2018; Roberts et al., 
2011; Tinner et  al., 2009; Vannière et  al., 2008, 2016; Walsh, 
2014). Charcoal records have revealed Holocene fire trends char-
acteristic of broad latitudinal and altitudinal belts (Vannière et al., 
2011), but these trends are less coherent on a regional scale and 
their drivers are contested (e.g. Burjachs and Expósito, 2015; Car-
racedo et al., 2018; Gil-Romera et al., 2010; López-Sáez et al., 
2017). Climatic interpretations are weakened by a lack of regional 
coherence in inferred aridity phases (the entire Holocene is ‘arid’ 
according to different authors: see Figure 8 in Schneider et  al., 
2016) and idiosyncratic ecological responses (Carrión et al., 2010; 
Morellón et al., 2018) due to complex bioclimatic heterogeneity 
inherent to Mediterranean landscapes. Anthropogenic interpreta-
tions suffer from our inability to define what ‘human impact’ con-
stitutes and how to recognise human–environment interactions in 
palaeoenvironmental records representing different spatial scales 
(Chapman, 2017; Head, 2008). The scarcity of integrated high-
resolution palaeoenvironmental and archaeological studies also 

hampers our ability to identify human-driven changes in the pal-
aeoenvironmental record. The challenge is to expand the capacity 
of new and existing methods to provide greater insight into Medi-
terranean ecosystem trajectories and tipping points.

Here we examine Mediterranean fire and vegetation diver-
sity histories by developing alternative approaches based on 
regime shift detection. Our analysis focuses on the Mediterra-
nean sector of the Iberian Peninsula, given its numerous high-
resolution pollen and charcoal series. We aim to determine (1) 
the timing of major environmental shifts during the last 10,000 
years and (2) whether a temporal relationship exists between 
fire regimes and pollen diversity change in Mediterranean Ibe-
ria’s Holocene ecosystems. To achieve these aims, we will iden-
tify abrupt vegetation changes and common fire histories using 
objective criteria. We then test the null hypotheses that pollen 
compositional turnover and fire regime change are unrelated 
temporally, except by chance. Finally, we discuss the likely 
drivers of fire regime and diversity change on millennial and 
centennial timescales.

Methods
Site selection
We selected the Iberian Peninsula for the present study after 
meta-analysis of Mediterranean pollen and charcoal records, 
particularly those published in and since the last Mediterranean 
charcoal synthesis (Vannière et al., 2011). Records were selected 
for inclusion based on the following criteria: location in the 
Mediterranean region (boundaries according to Médail and 
Diadema, 2009; Médail and Quézel, 1997), at least 5000 years 
of Holocene record, pollen and charcoal data sampled from the 
same cores with an average sampling resolution of <100 calen-
dar years, an average of <1500 years between dated levels and 
no major sedimentation hiatuses. Records with strong fluvial 
signals were also excluded, but we retained lowland sites with 
minor fluvial influence to avoid skewing the dataset towards 
high-elevation lake records.

These criteria produced 13 high-resolution records for the Ibe-
rian Peninsula (Table 1; Figure 1), representing an altitudinal gra-
dient from sea level to >3000 m a.s.l. (Table 1). The records also 
lend themselves to comparison in terms of vegetation, climate, 
land-use history and basin size (source area).

Numerical methods
Sedimentary charcoal data were used as a fire proxy. Microscopic 
(pollen-slide) charcoal records are traditionally thought to repre-
sent regional fire histories and macroscopic (sieved) charcoal to 
represent local fire histories (Carcaillet et  al., 2001). Extensive 
calibration of recent fires and charcoal in Europe has cast doubt 
on this division, demonstrating a strong regional component in 
macroscopic charcoal signals (Adolf et al., 2018), in agreement 
with charcoal dispersal models (Peters and Higuera, 2007). We 
included both types of charcoal in our analysis.

Charcoal accumulation rates (CHAR) were calculated for each 
record using published age models. New age models using Bayes-
ian modelling (Bacon; Blaauw and Christen, 2011) were pro-
duced for the BAZ, GAD, NAV and VIL records (Table 1; 
Supplemental Material Table S1, available online), since revised 
age-depth models were either unavailable or were overly linear 
(thus creating artificial inflections in modelled CHAR estimates). 
While certain aspects of the fire regime can be estimated using 
contiguous charcoal series, these are presently too scarce in Iberia 
to permit a synthesis on long temporal and spatial scales (Van-
nière et  al., 2016). Our analysis therefore uses CHAR z-scores 
(Power et al., 2008) and CHAR variance, these being the most 
accessible parameters with the available data.
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Charcoal z-scores differentiate periods with greater or lesser 
biomass burned (Ali et al., 2012; Vannière et al., 2016). Changes 
in charcoal variance indicate periods where charcoal peak magni-
tudes changed in relation to the background, potentially reflecting 
shifts in fire episodes’ frequency or intensity (Gavin et al., 2006; 
Higuera et al., 2009). Charcoal z-scores from all of the sites were 
combined into a composite curve using a local regression proce-
dure (Daniau et al., 2012; Power et al., 2008). Common trends 
were compared with potential bioclimatic, palaeoclimatic and 
anthropogenic drivers (e.g. Fick and Hijmans, 2017; Isern et al., 
2014; Roberts et al., 2011).

Rate-of-change analysis is commonly used to estimate com-
positional change-over-time in pollen sequences (Birks, 2012). It 
is also used to estimate compositional turnover, but here we use 
‘turnover’ to refer to temporal replacement, estimated via beta 
diversity indices (Legendre, 2014). To pinpoint periods of rapid 
vegetation change in the records from Mediterranean Iberia, we 
used the squared-chord distance (SCD) metric (Overpeck et al., 
1985; Seddon et al., 2015; Williams et al., 2001). SCD is favoured 
for its high signal-to-noise ratio and its robustness to differences 
in the number of pollen types included (Overpeck et al., 1985). 
Interpretation of the significance of SCD change-over-time is 
achieved by empirical thresholds (Davis et al., 2015; Overpeck 
et al., 1985) and statistical thresholds (Seddon et al., 2015). The 
former require high-quality modern pollen data from representa-
tive vegetation types to validate the thresholds, while the latter 
depend on confidence intervals estimated from randomisation 
(bootstrapping) of samples within the pollen sequences. Both 
approaches were applied here, with the empirical approach vali-
dated using 352 modern pollen samples and associated vegeta-
tion descriptions from JA López-Sáez’s contributions to the 
European Modern Pollen Database (Davis et al., 2013; López-
Sáez et al., 2010).

As rates-of-change may be unreliable when sampling inter-
vals are uneven (Birks, 2012), data are typically interpolated, 
smoothed or binned to even intervals prior to SCD calculation 
(Jacobson and Grimm, 1986; Seddon et al., 2015). These manip-
ulations may introduce statistical artefacts that could be mistaken 
for palaeoecological changes (Birks, 2012). With this in mind, 
we modified the approach of Seddon et  al. (2015): while they 
used mean pollen percentages from evenly spaced time bins to 
calculate SCD, we randomly selected one pollen sample from 
each time bin, then calculated the SCD between it and a ran-
domly selected sample from the next (younger) sample bin. This 
was repeated 50 times for each pair of bins before calculating the 
mean SCD score. The method preserves the age structure of the 
data (comparing older with younger samples) and better accounts 

for within-time bin variability. SCD was calculated in this way 
for bin lengths of 200, 250, 300 and 400 years. Only terrestrial 
pollen types were included.

In estimating diversity, the taxonomic precision of pollen 
identifications may influence palynological richness (i.e. num-
ber of identified taxa: Odgaard, 1999). This effect is minor in 
ecosystems where pollen diversity is low and taxonomy is con-
sistent between researchers (Reitalu et al., 2015). In contrast, 
Mediterranean Iberian pollen records are characterised by 
diverse, taxonomically rich assemblages. To avoid subjectivity 
and information loss from taxonomic harmonisation, diversity 
estimates were calculated independently for each pollen 
record. Major changes in diversity within each record are thus 
comparable between records, even if the numerical values 
assigned to the estimates remain influenced by taxonomic 
precision.

It is more difficult to correct biases conferred by similarities in 
pollen morphology within certain botanical families (e.g. Poa-
ceae), by differential pollen production, dispersal and taphonomy, 
or by the structure of the vegetation (Birks et al., 2016; Giesecke 
et  al., 2014; Odgaard, 1999). Pollen production and dispersal 
biases may be reduced by the application of empirical correction 
factors or modelled pollen productivity estimates (Felde et  al., 
2016; Matthias et al., 2015). Such corrections are unavailable for 
key Mediterranean taxa, have large uncertainties (Giesecke et al., 
2014) and have rarely been tested outside Northern Hemisphere 
temperate and boreal forest zones (but see Duffin and Bunting, 
2008; Mariani et al., 2016). Hence, we opted to analyse palyno-
logical diversity as an indicator of vegetation change in its own 
right (Giesecke et al., 2014).

We estimated palynological richness for each pollen record 
following the randomised procedure of Felde et al. (2016). This 
method randomly resamples (without replacement) each pollen 
sample to the minimum sample size (the lowest upland pollen 
sum in each record). We performed this procedure 100 times for 
each sample of each pollen record. Results are equivalent to those 
produced by classical rarefaction (Birks and Line, 1992; Felde 
et al., 2016). Richness estimates were also calculated to a stan-
dard pollen sum (100 grains) to enable multi-record comparisons 
(Giesecke et al., 2012), keeping in mind that these estimates are 
influenced by taxonomic precision.

Random resampling was also performed 100 times in the esti-
mation of beta diversity with Ružička’s dissimilarity index

D
B C

A B CR =
+( )

+ +( )

Table 1.  Pollen and charcoal records analysed in this study, ordered according to elevation.

Site code and name Elevation (m a.s.l.) Latitude (DD) Longitude (DD) Charcoal analysed References

LRS–Laguna de Río Seco 3020 37.05 −3.35 Macro Anderson et al. (2011)
BSM–Basa de la Mora 1914 42.544 0.326 Micro Pérez-Sanz et al. (2013)
BAZ–Baza 1900 37.23 −2.7 Micro Carrión et al. (2007)
GAD–Gádor 1530 36.931 −2.905 Micro Carrión et al. (2003)
CHC–Charco da Candieira 1400 40.35 −7.583 Micro Van der Knaap and van Leeuwen 

(1995) and Connor et al. (2012)
ELM–El Maíllo 1100 40.55 −6.217 Micro Morales-Molino et al. (2013)
TUL–Tubilla del Lago 900 41.817 −3.567 Both Morales-Molino et al. (2017b)
ESC–Espinosa de Cerrato 885 41.95 −3.933 Micro Franco-Múgica et al. (2001); 

Morales-Molino et al. (2017b)
VIL–Villaverde 870 38.799 −2.36 Micro Carrión et al. (2001)
NAV–Navarrés 255 39.084 −0.688 Both Carrión and van Geel (1999)
BAN–Banyoles 174 42.133 2.75 Macro Revelles et al. (2015)
CAS–Castelló 2.4 42.283 3.1 Macro Ejarque et al. (2016)
RFT–Ribeira do Farelo/Ribeira da Torre 2 37.15 −8.6 Micro Schneider et al. (2016)
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Figure 1.  Site locations (maps, top panel) with site codes according to Table 1. Millennial-scale trends in (a) fire activity (CHAR z-scores; 
micro: pollen-slide charcoal, macro: sieved charcoal), (b, c) turnover axes, (d) arboreal pollen percentages and (e) palynological richness 
(estimated number of taxa in 100 pollen grains) in the 13 selected Mediterranean Iberian records. Records are grouped into those that exhibit 
a mid-Holocene fire increase (left panel) and those with a late-Holocene fire increase (right). Turnover trends are aligned and labelled according 
to the correlations in Supplemental Material Table S2, available online. For clarity, a 0.5 loess smoother is applied. *TUL trends are shown as 
dotted lines on the left panel and solid lines on the right panel because this record has a mid-Holocene fire peak but its turnover trends fit 
with records showing a late-Holocene fire increase (Supplemental Material Table S2, available online).

where A is the sum of the minimum abundances of each taxon, B is 
one sample’s summed abundances minus A and C is another sample’s 
summed abundances minus A (Legendre, 2014). This quantitative 
form of the Jaccard index may be decomposed into temporal replace-
ment (i.e. turnover) and abundance difference components (Barwell 
et al., 2015; Legendre, 2014). Decomposition of beta diversity is of 
interest palaeoecologically because it helps to understand the long-
term processes driving turnover and species loss (Birks et al., 2016; 
Blarquez et al., 2014a; Felde et al., 2016; Jackson and Sax, 2010).

In this study, resampling to the minimum sum in each record 
means that the abundance difference component of beta diversity 

is zero (i.e. B and C are equal). All inter-sample dissimilarities are 
then estimates of replacement (i.e. turnover). These were square-
root transformed, and two major turnover trends were identified 
using principal coordinates analysis (PCoA; Legendre, 2014). 
These trends derive from all inter-sample dissimilarities (unlike 
the SCD approach, which compares only adjacent samples). Here, 
we use beta diversity decomposition to identify major turnover 
events and trends in individual pollen records, not to compare 
turnover values between records (cf. Birks, 2007).

Turnover trends were compared with arboreal pollen ratios 
and anthropogenic indicators to identify synchronous changes. 
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Anthropogenic indicators on the Iberian Peninsula are problem-
atic because many of ‘classic’ taxa (e.g. Plantago, Rumex, Urtica 
and Juglans: Behre, 1981) belong to the original flora (Carrión 
and Sánchez-Gómez, 1992; Ejarque et al., 2011; Pantaléon-Cano 
et  al., 2003). We used Brassicaceae, Cannabis/Humulus-type, 
Cerealia-type, Castanea, Juglans, Olea, Plantago spp., Polygo-
num aviculare-type, Rumex spp., Trifolium pratense-type, Urtica 
dioica-type, Vitis and fungal spores of Sordariaceae, Sporormi-
ella, Podospora, Cercophora and Coniochaeta (Carrión and van 
Geel, 1999; Ejarque et al., 2011; Revelles et al., 2017). Any of 
these taxa that occurred in the early-Holocene samples from a 
record (i.e. prior to Neolithic agriculture) were excluded as 
anthropogenic indicators from that record.

As our objective was to determine whether a relationship 
exists between pollen diversity change and fire, we used regime 
shift detection (Rodionov, 2004) to pinpoint significant change 
events in plant diversity and fire proxies. Regime shift detection 
applies a sequential t-test to the identification of significant tem-
poral changes in univariate series (e.g. Carter et al., 2018; Morris 
et  al., 2013). This type of analysis delineates ‘regime zones’ 
(Morris et al., 2013) or ‘change points’ (Finsinger et al., 2018), 
analogous to the results of independent splitting (Connor et al., 
2017; Walker and Wilson, 1978).

We implemented regime shift detection (Rodionov, 2004, 
2006) with elapsed time as the observation timescale, a signifi-
cance level of 0.05, a cut-off length of 10 samples and outliers 
removed with Huber’s weight parameter of 5 (Morris et  al., 
2013). A standard cut-off length was considered appropriate since 
all our records have high temporal resolution. Cut-off lengths 
were increased proportionally for higher resolution contiguous 
charcoal series to match those of the pollen data. Turnover events 
for the first and second PCoA axes, as well as variance shifts for 
charcoal data, were detected using the same parameters. Regime 
shift outliers in the charcoal records were taken to represent 
anomalous charcoal peaks.

Finally, significant shifts in fire proxies (CHAR z-scores and 
variance) and pollen diversity proxies (richness and turnover) 
were analysed as event sequences. Event sequence analysis is 
applied in the social sciences to predict how life events (e.g. mar-
riage, childbirth) impact subsequent life trajectories (Gabadinho 
et al., 2009). In this study, we define ‘events’ as significant shifts 
in diversity and fire. Each event was assigned a value of 1 (vs 0 
for non-events). We inferred a potential cause–effect relationship 
if fire/diversity events occurred simultaneously or within the sub-
sequent 200 years in two or more sediment records. The 200-year 
interval was based on previous estimates of recovery times in Ibe-
rian ecosystems (Burjachs and Expósito, 2015; Carrión et  al., 
2003; Gil-Romera et al., 2014; Morales-Molino et al., 2017b).

The significance of the real event sequences was assessed by 
randomly reshuffling the samples from each record 1000 times to 
generate bootstrapped sequences for comparison with real data 
using the Poisson distribution and 95% confidence intervals. The 
same approach was used to determine whether the frequency of 
fire, turnover and richness shifts was significant during each 500-
year interval of the Holocene.

The R packages paleofire (Blarquez et  al., 2014b), vegan 
(Oksanen et al., 2018), adespatial (Dray et al., 2018) and TraMineR 
(Gabadinho et al., 2009; Ritschard et al., 2013) were used for char-
coal series composition, rarefaction, beta diversity partitioning and 
event sequence analyses, respectively (R Core Team, 2018).

Results
Holocene fire records from the 13 Mediterranean Iberian sites are 
grouped into (1) records with a mid-Holocene fire maximum 
(MH group: with highest charcoal values between 8000 and 4000 
cal. yr BP) and (2) those with a late-Holocene fire maximum (LH 

group: with highest charcoal values between 3000 and 1000 cal. 
yr BP; Figure 1a). Records in the MH group exhibit turnover on 
both PCoA axes (Figure 1b and c) at the onset of the fire increase, 
the timing of which varies from site to site (e.g. approx. 8000 cal. 
yr BP at BSM to approximately 5500 cal. yr BP at BAN: see Table 
1 for site codes). Despite showing a mid-Holocene fire increase, 
TUL’s turnover trends group with those of the records in the LH 
group. LH-group records show turnover on axis 2 between 7000 
and 5000 cal. yr BP, several millennia before the late-Holocene 
fire maximum; both axes then exhibit turnover from 3000 cal. yr 
BP to the present, coinciding with the late-Holocene fire maxi-
mum. For each group of sites, one of the PCoA axes is strongly 
correlated with arboreal pollen proportions (Figure 1d).

Palynological richness estimates (Figure 1e) reveal minor 
increases in some records around 7000 to 6000 (BSM, CHC, 
RFT) and 3000 to 2000 cal. yr BP (LRS, BSM, BAN, CHC, ELM, 
TUL). Pronounced mid-Holocene richness maxima appear at 
NAV (approximately 5500 cal. yr BP) and VIL (4500 cal. yr BP). 
Richness trends for the most recent millennium are highly diver-
gent, with major increases at some sites (TUL and ESC) and steep 
declines at others (CHC and CAS).

Validation of the SCD empirical threshold (i.e. SCD = 15: 
Overpeck et al., 1985; Williams et al., 2001) using modern pollen 
data found that most SCD scores (60%) within each vegetation/
regional combination were below the empirical limit. These 
included pine forests (average SCD 10.8), fir forests (8.5), ever-
green oak woods (7.9), maquis (3.0), broom heaths (6.2), erica-
ceous heaths (8.2), olive groves (6.6), cultivated fields (12.4), 
high-altitude meadows (12.4), salt marshes (9.9) and vegetation 
dominated by tamarisk (3.4), Ephedra spp. (7.7) and rushes (3.6). 
A minority of vegetation types had higher average SCD scores, 
including dehesas (29.8), pastures (29.3), marcescent oak forests 
(38.2), xerophytic maquis (21.9), abandoned fields (32.3), ripar-
ian forests (32.7) and beech forest (17.7).

Figure 2 shows average SCD scores alongside anthropogenic 
indicators, a charcoal composite curve and aggregated fire, rich-
ness and turnover events in the 13 palaeorecords. The SCD graph 
distinguishes 200-year periods of pollen assemblage turbulence 
from periods of relative stability. Abrupt changes are concentrated 
around 5500 to 5000 cal. yr BP and since 1800 cal. yr BP. Mean 
SCD scores for the 13 records exceed the threshold during these 
periods, and more than 50% of the individual records exceed the 
threshold at the same time. Sustained increases in charcoal and 
anthropogenic indicators occur just prior to and during these peri-
ods of abrupt vegetation change.

Event sequence analysis showed that turnover events (PCoA 
axis 1) followed an increase in charcoal variability more often 
than expected by chance (Table 2; Supplemental Material Figures 
S1 and S2, available online). This was the only significant result 
of the 80 different fire–diversity combinations tested. The timing 
of charcoal, richness and turnover shifts was significant in the 
mid–late Holocene (Figure 3). Richness increases were signifi-
cantly more frequent in the period 2000–1500 cal. yr BP and turn-
over events were significant in the periods 6750–6000, 3250–2750 
and 1250–250 cal. yr BP. Charcoal shifts were significant in the 
periods 5750–4500 and 2250–1750 (increases) and 4500–3750 
cal. yr BP (decrease) (Figure 3). The first occurrence of a pre-
turnover charcoal peak (regime shift outlier) in each record 
occurred in two main phases: 7100 to 5500 cal. yr BP and 3300 
to 1600 cal. yr BP (Figure 3).

Discussion
Our results show several meaningful shifts in vegetation, fire 
and landscape dynamics during the mid- and late Holocene, and 
demonstrate a strong link between fire and pollen diversity in 
the environmental history of Mediterranean Iberia. These links 
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were established quantitatively and replicated in multiple pal-
aeorecords. Some of the observed shifts constitute tipping points 
(sensu Van Nes et al., 2016) in the millennial ecosystem trajec-
tories of the region – quasi-permanent transitions in ecosystem 

state from wooded to open vegetation and from fire-adapted to 
fire-prone systems. Before discussing the significance and 
implications of these results, we outline some methodological 
considerations.

Methodological considerations
For SCD estimation, randomly resampling within each time bin 
reduces the bias associated with comparing bin means, while 
preserving the temporal structure of the data. The empirical 
threshold of 15 (Overpeck et  al., 1985) appears appropriate 
when compared with modern pollen samples from Iberian veg-
etation groups. Higher thresholds were found for some groups, 
for example, dehesa. This may relate to the structural rather than 
floristic vegetation classification or the high diversity or low 
pollen productivity of Mediterranean shrubland plants (Blondel 
and Aronson, 1995). Additional modern pollen sampling and 
detailed vegetation surveys would be required to confirm this. 
Bootstrapped confidence intervals indicated few significant 
SCD changes and may be unrealistic for Holocene composi-
tional changes.

Beta diversity can be estimated and decomposed with vari-
ous diversity indices (Barwell et  al., 2015; Legendre, 2014). 
Ružička’s index is a simple quantitative index and other indices 
produced similar results. To estimate beta diversity, pollen sam-
ples were reduced to the minimum sum. While this can cause 
information loss (Giesecke et al., 2014), repeated random resa-
mpling ensures that there is little impact on resulting trends 
(Supplemental Material Figure S3, available online). Diversity 
indices applied to pollen data are influenced by equitability 
(evenness), a product of pollen productivity and dispersal biases 
(Birks et  al., 2016; Odgaard, 1999). Calibration studies (e.g. 
Matthias et al., 2015) would be required to correct these biases 
in estimates presented here. It is unlikely that our estimates 
reflect floristic richness and turnover directly, but we assume 
that the long-term trends and short-term shifts provide qualita-
tive indications of diversity change in the surrounding landscape 
(Birks et al., 2016).

Regime shift detection is useful for identifying abrupt events 
in palaeoecological records (Carter et al., 2018; Finsinger et al., 
2018). One drawback is the method’s reduced performance at the 
extreme ends of time series (Andersen et  al., 2009); hence, we 
removed any such shifts. The timing of some fire shifts could be 
influenced by sediment accumulation rates (Finsinger et  al., 
2018), but these are unlikely to be significantly associated with 
pollen turnover events as the latter are independent of sedimenta-
tion rates. Another constraint of regime shift detection is its sensi-
tivity to predetermined parameters (e.g. significance levels and 
treatment of outliers), especially when the variable of interest 
changes gradually. We opted for p < 0.05 to allow detection of 
significant moderate shifts. A more stringent significance level of 
p < 0.001 resulted in too few event combinations to permit sig-
nificance testing.

An important consideration for event sequence analysis is 
defining appropriate time lags in which responses can occur. Ide-
ally, the lag should be less than the sampling interval and not 
more than what is ecologically relevant. Of the 1431 pollen sam-
ples in our dataset, 19% were >100 years apart, 3% were >200 
years apart and 1% were >300 years apart. For a fire shift to be 
ecologically relevant, a response should occur within the recovery 
time of the vegetation, otherwise inference is weak. Information 
on recovery times following fire regime change is lacking for 
most Iberian vegetation types. Palaeoecological studies (Burjachs 
and Expósito, 2015; Carrión et al., 2003; Gil-Romera et al., 2014; 
Morales-Molino et al., 2017b) indicate that a period of 100–200 
years is a useful approximation. The maximum lag of 200 years is 
therefore a compromise between sampling intervals and ecologi-
cal relevance.
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Figure 2.  Centennial-scale summary of (a) anthropogenic 
indicator pollen and fungal spores, (b) significant shifts in 
palaeovegetation (squared-chord distance (SCD)), (c) synthesised 
fire history, (d) significant fire shifts, (e) significant palynological 
richness shifts and (f) significant turnover (beta replacement) 
events in the 13 Iberian records. Results are binned into 200-
year blocks to facilitate comparison with other papers in this 
volume (e.g. Fyfe et al., 2019). See text for an explanation of the 
anthropogenic indicator and fire synthesis curves. SCD results are 
shown in two ways: mean values for the 13 sites (solid line, with 
empirical threshold shown dotted) and the percentage of sites 
with an SCD score > 15 (bars). The direction of fire and richness 
shifts is indicated as +ve (increase) or –ve (decrease). Outlined 
fire shifts are from microscopic CHAR (pollen-slide method). 
Mean and variance shifts are combined due to their coherence in 
terms of timing and direction (see Supplemental Material Figure 
S2, available online). The dotted line on the lowermost graph 
shows the number of records that contribute to each period. 
Percentages that may be biased by having few records are marked 
with a question mark (?).
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Finally, site selection, dating and data quality have an unavoid-
able influence on the results. We included pollen/charcoal records 
that met strict data requirements and represent a broad spectrum 
of vegetation types, climatic zones and elevations. The records 
cannot hope to capture the full range of variability in Iberian envi-
ronments and provide only snapshots of fire–diversity interac-
tions in the past. Non-pollen palynomorph indicators of human 
activity have been identified in eight of the records, but others 
lack this proxy. Square-root transformation (Figure 2) was applied 
to dampen these differences. Most Iberian sites are small lakes or 
mires that have a limited pollen/charcoal source area. The preva-
lence of pollen-slide charcoal records (microscopic; Table 1) may 
skew fire history towards regional-scale changes compared with 
macroscopic charcoal (Carcaillet et  al., 2001; cf. Adolf et  al., 
2018). Charcoal z-scores from sites where both fractions were 
counted show remarkable similarity (NAV, TUB; Figure 1). Most 
Iberian sites are small lakes or mires that have a limited pollen/
charcoal source area. Our capacity to reconstruct key aspects of 
fire regimes, such as fire return intervals, is limited by the paucity 
of long charcoal records with contiguous sampling. We hope that 
future research will fill these gaps in present knowledge with 
high-resolution multi-proxy datasets.

Drivers of Holocene fire trends in Mediterranean 
Iberia
Fire has played an undeniably important role in shaping the Holo-
cene vegetation of Mediterranean Iberia (Carrión et  al., 2010; 
López-Sáez et al., 2017). Critical aspects for Holocene vegetation 
development include fire frequency and the combined impacts of 
fire and human activity or climatic change (Carrión et al., 2003; 
Morales-Molino et al., 2017b, 2018). While fire’s effects on pal-
aeovegetation are well understood, the drivers of Holocene fire 
trends are less so.

Two distinct fire trends emerged from our analysis of high-reso-
lution charcoal series: (1) a mid-Holocene fire increase and (2) a 
late-Holocene fire increase (MH and LH groups; Figures 1a and 3). 
These trends do not lend themselves to clear interpretation in terms 
of elevation (Vannière et al., 2016), current fire regime (Moreno and 
Chuvieco, 2013; Vázquez de la Cueva, 2006) or soil type (Supple-
mental Material Figure S4, available online). Latitude and longitude 
emerged as weakly related variables (Supplemental Material Figure 
S5, available online; Morellón et al., 2018; Vannière et al., 2011). 
MH group sites tend to be situated further east and north compared 
with LH sites (Figure 1, top). Today, these sites tend to have a milder 
bioclimate compared with the LH group, which is weakly associated 
with greater rainfall seasonality and more extreme winter tempera-
tures (Supplemental Material Figure S5, available online).

At a local scale, aspect influences fire frequency through inter-
actions between topography, prevailing winds and fuel accumula-
tion (Moreno et  al., 2011). Several of the MH group sites are 
situated in N–S-oriented valleys, while LH group sites are often 
in E–W valleys. Without an understanding of charcoal source area 
and Holocene wind directions, these local-scale factors remain 
difficult to reconcile with fire history at appropriate scales. Fire–
landscape simulations are needed to shed light on microclimatic 
and topographic controls (e.g. Snitker, 2018).

At a regional scale, fuel quantity and connectivity interact 
with climate to promote flammability (Gil-Romera et al., 2014; 
Pausas and Paula, 2012). Arboreal pollen ratios approximate the 
level of woody biomass in the site surroundings and may be used 
to assess Holocene fire–fuel linkages (Burjachs and Expósito, 
2015; Marlon et  al., 2006). Prior to the mid-Holocene fire 
increase, neither arboreal pollen ratios (Supplemental Material 
Figure S5, available online) nor forest type (Supplemental Mate-
rial Figure S2, available online) anticipate where burning subse-
quently occurred. Lake-level data (Aranbarri et al., 2014; Fletcher 
and Zielhofer, 2013) provide little suggestion that aridity, which 
can increase flammability in moist productive zones (Pausas and 
Paula, 2012), was a feature of the palaeoclimate around 7500 cal. 
yr BP, when fire trends from MH and LH groups began to rapidly 
diverge (Figure 3).

Population density is a key factor influencing recent ignitions 
in Mediterranean landscapes (Chergui et  al., 2018; Ganteaume 
et al., 2013; Vázquez de la Cueva, 2006). Some sites in the MH 
group, especially in the lowlands, are located where historical 
(19th century) population density (Silveira et al., 2013) and agri-
cultural potential (Aubán et al., 2015) were high. The timing of 
the mid-Holocene fire increase corresponds to the establishment 
of Neolithic populations across the Iberian Peninsula. This origi-
nated at various points along the Mediterranean coast before 
spreading into northern inland zones and along the Atlantic coast 
(Aubán et al. 2015; Isern et al., 2014, 2017). Apart from the Pyr-
enees site (BSM), where early-Holocene fires are linked to cli-
matic instability between 9800 and 8100 cal. yr BP (Pérez-Sanz 
et al., 2013), an anthropogenic driver is probably consistent with 
the timing and geographic spread of the mid-Holocene fire 
increase (Dietze et al., 2018; Vannière et al., 2016).

Abrupt vegetation changes in Mediterranean Iberia
The mid-Holocene spike in SCD scores around 5500 to 5000 cal. 
yr BP (Figure 2) corresponds to major transition in the environ-
mental history of the Iberian Peninsula and Mediterranean more 
broadly (Burjachs et  al., 2017; Roberts et  al., 2011; Vannière 
et  al., 2011). During this environmental transition, lake levels 
changed abruptly at several Mediterranean sites (Aranbarri et al., 
2014; Magny et al., 2011, 2013, cf. Reed et al., 2001), vegetation 
shifted from mesic to more xeric in numerous Iberian pollen 
records (e.g. Anderson et al., 2011; Carrión, 2002; Carrión et al., 
2010; Fletcher et al., 2007; Gil-Romera et al., 2010; González-
Sampériz et al., 2017; Jalut et al., 2000; Morellón et al., 2018) and 
a fire trend ‘reversal’ occurred across the Mediterranean, with fire 
generally increasing south of 40°N and decreasing north of this 
latitude (Vannière et al., 2011). The north–south divide in fire and 
lake-level proxies is indicative of a regional-scale climatic driver, 
potentially involving shifts in the Intertropical Convergence Zone 
and North Atlantic Oscillation (NAO; Magny et al., 2013; Van-
nière et al., 2011).

If climate were the main driver of vegetation change in Medi-
terranean Iberia, it did not affect the vegetation at all sites equally. 
SCD scores generally remain below threshold at sites where pine 
was dominant (Supplemental Material Figure S2, available 
online), perhaps due to pine forests’ resilience to environmental 

Table 2.  Event sequence analysis: interactions between variables that occurred more frequently than expected by chance.

Lead variable Lag variable p value Sites (timing of reaction, cal. yr BP)

Fire variance increase 
(microCHAR)

Turnover (PCoA 
axis 1)

0.011* BSM (9389, 8389), CHC (3159), VIL (2825), 
BAZ (2041), ESC (1780), TUL (1262)

CHAR: charcoal accumulation rates; PCoA: principal coordinates analysis.
Significance levels derived from bootstrapping (1000 iterations) according to the Poisson distribution and 95% confidence intervals.
*p < 0.05.
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Figure 3. A synthesis of Holocene fire and vegetation diversity change in Mediterranean Iberia. Human activity and abrupt vegetation change 
proxies (top) compared with significant richness, turnover and fire shift frequencies (middle) and the timing of anomalous charcoal peaks that 
precede turnover events, the composite fire history and archaeological periods (bottom). Significant shift frequencies are 500-year periods in 
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Figure 1b and c). Dashed lines indicate longer intervals in which the occurrence of richness or turnover shifts was significant. Grey shaded 
zones indicate abrupt vegetation changes according to above-threshold SCD scores (Figure 2).

change (Morales-Molino et  al., 2017a; Rubiales et  al., 2010). 
BSM is an important exception, with its borderline Mediterra-
nean–temperate climate and prevalence of Pinus uncinata instead 
of typical Mediterranean pines (Pérez-Sanz et  al., 2013). Here 
pine expanded rapidly around 5700 cal. yr BP. Sites with a par-
ticularly pronounced spike in SCD scores between 5500 and 5000 
cal. yr BP are mostly situated in Eastern Iberia (BAN, BSM, NAV 
and VIL), where the influence of the Western Mediterranean 
Oscillation on rainfall patterns and seasonality may have modu-
lated the effects of Holocene climatic changes relative to NAO-
dominated parts of Iberia (Martin-Vide and Lopez-Bustins, 2006; 
Morellón et al., 2018). Apart from BSM, these sites experienced a 
rapid decline in Pinus nigra to the benefit of oak and scrub 
vegetation.

Mid-Holocene expansion of xerophilous scrub and fire-
adapted pines (Aranbarri et  al., 2014; Carrión et  al., 2010; 
Fletcher et al., 2007) fits well with a change in fire regime, as 
most Mediterranean shrubland plants have more fire-adaptive 
traits than Pinus nigra and mesophytes (Tavşanoğlu and Pausas, 
2018). Charcoal evidence shows a regional-scale increase in 
burning and fire regime change between 6000 and 4500 cal. yr 
BP (Figures 2 and 3). Whether this fire increase was triggered by 
aridity is uncertain. Mediterranean vegetation switches from 
low- to high-flammability states according to aridity thresholds 

that vary geographically (Fréjaville and Curt, 2015; Pausas and 
Paula, 2012). Aridity causes fire probability to increase in pro-
ductive mesic zones and to decrease in fuel-limited xeric zones 
(Batllori et al., 2013). Observed fire trends give no indication of 
geographic divergence between 5500 and 5000 cal. yr BP. If 
anything, there is a temporary convergence of subregional 
trends that began diverging much earlier, around 7500 cal. yr BP 
(Figure 3).

The peak in anthropogenic indicators around 5500 cal. yr 
BP, while moderate compared with more recent values, sug-
gests increased human activity may be involved in abrupt veg-
etation change (Figure 2). The anthropogenic indicator signal is 
dominated by changes at the NE sites (BAN, BSM), but archae-
ological records attest the spread of human occupation across 
Iberia around 5500 cal. yr BP (Blanco-González et  al., 2018; 
Fyfe et al., 2019). Recent modelling at NAV indicates that fires 
during this period were largely anthropogenic (Snitker, 2018). 
Human use of fire, especially during a phase of rapid demo-
graphic change, might explain the significant co-occurrence of 
fire shifts.

The final phase of abrupt vegetation change corresponds to the 
most recent 1800 years. Unlike the mid-Holocene transition, this 
change is not constrained to a defined period and its onset occurs 
earlier at some sites. Steadily rising and above-threshold SCD 
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scores appear in the west (CHC) at approximately 3200 cal. yr BP 
and the SE at approximately 2700 cal. yr BP (VIL). These changes 
are linked with fire shifts (Figures 1–3). Abrupt change began at 
GAD around 1850 cal. yr BP; at ESC, TUL and CAS at approxi-
mately 1300 cal. yr BP; and finally BSM, RFT, LRS and ELM in 
the last millennium. These abrupt changes have no clear geo-
graphic pattern, and the original research papers (Table 1) link 
them unanimously to human impacts, including deforestation, 
grazing and fire. The increase in anthropogenic indicators sup-
ports this interpretation (Figure 2). The amplitude of these late-
Holocene vegetation shifts was, in most cases, greater than the 
mid-Holocene transition. 

Fire-led changes in vegetation richness
Overall richness in Mediterranean pollen records has generally 
increased through the Holocene. Researchers have related this 
increase to human impact (Franco-Múgica et al., 2001; Morales-
Molino et  al., 2017b; Servera-Vives et  al., 2018), reductions in 
local fire frequency/magnitude and the expansion of grazing 
(Jouffroy-Bapicot et al., 2016), increases in regional fire activity 
(Colombaroli et  al., 2009; Colombaroli and Tinner, 2013), 
increased landscape openness (e.g. Anderson et  al., 2011; Gil-
Romera et  al., 2014; Morales-Molino, García-Antón, 2014; 
Muller et al., 2015; Noti et al., 2009; Vescovi et al., 2010), catch-
ment erosion events (Robles-López et al., 2017) and changes in 
the evenness of plant communities (Beffa et al., 2016).

The variety of interpretations stems in part from the variety of 
ecosystems considered and potential threshold responses to fire 
(Colombaroli et  al., 2008; Morales-Molino et  al., 2017b). Fire 
changes would be expected to produce different outcomes 
depending on vegetation type (e.g. coniferous vs sclerophyllous 
fuels), prevailing climate and the timing, magnitude and nature of 
human interactions with the vegetation (Carrión et al., 2010; Gil-
Romera et al., 2010). Richness sometimes responds positively to 
fire (Colombaroli and Tinner, 2013), sometimes negatively (Bis-
culm et al., 2012) and at many sites the relationship is inconsistent 
(Gil-Romera et al., 2014). It is often unclear whether richness is 
responding to fire or whether fire is responding to changes in the 
plant community.

The 13 Mediterranean Iberian pollen sequences exhibit highly 
divergent Holocene richness trends (Figure 1e), reflecting the 
complexity of current and past vegetation patterns. Richness is 
relatively high in oak-, shrub- and herb-dominated palaeovegeta-
tion (e.g. CAS) and relatively low in pine-dominated palaeoveg-
etation (e.g. ESC), a pattern that reflects differences in plant 
diversity between pine forests and other vegetation types (Blondel 
and Aronson, 1995) and the equitability of the pollen assem-
blages. Shifts between these palaeocommunities account for most 
of the richness changes observed. Early–mid Holocene richness 
increases are associated with forest or woodland vegetation, while 
mid–late-Holocene richness changes are associated with open 
vegetation (e.g. scrub, heath, grassland).

Fire and richness are clearly interlinked on a regional scale 
(Figure 3) and a site level (Supplemental Material Figure S2, 
available online). The frequency of richness shifts was significant 
over the entire period from 5500 cal. yr BP to the present. Rich-
ness increases were significant between 2000 and 1500 cal. yr BP. 
Both periods were preceded by a significant rise in positive fire 
regime shifts (Figure 3), implicating fire as a probable driver of 
increasing richness (Colombaroli et  al., 2007). Richness trends 
from the different sites tend to converge during the last 2000 years 
and especially since the Middle Ages (Figure 1e). This may be 
due to vegetation homogenisation on a regional scale (Colom-
baroli and Tinner, 2013; González-Sampériz et al., 2017) through 
the pervasive ecological impacts of the Roman and Medieval 
periods (Aranbarri et al., 2014; Schneider et al., 2016).

Fire-led vegetation turnover
Turnover provides further insights into fire’s impact on diversity, 
being a key community-level response to external forcing events 
(Jackson and Sax, 2010). We interpret the turnover trends as rep-
resenting oak woodland diversity change (Figure 1b) and open 
vegetation (non-forest) diversity change (Figure 1c). This is based 
on correlated taxa (Supplemental Material Table S2, available 
online), richness trends (Figure 1e) and ecological knowledge 
(e.g. Blondel and Aronson, 1995). In the early Holocene, the only 
fire-led turnover events occurred at BSM (Pyrenees) around 9390 
and 8390 cal. yr BP (Table 2). Fire regime shifts here caused the 
temporary expansion of pines to the detriment of oak woodlands, 
linked to rapid climatic changes (Pérez-Sanz et al., 2013). Mid- 
and late-Holocene fire–turnover relationships are discussed in the 
following sections.

Mid-Holocene turnover in oak woodlands.  On a millennial scale, 
regardless of whether fire increased in the mid- or late-Holocene, 
fires precede or coincide with periods of greater turnover (Figures 
1 and 2). Woodland turnover trends for the MH group show an 
early-Holocene drift towards pine forest. This drift rapidly 
reversed after the onset of increased fire, the turnover trajectory 
moving towards higher diversity oak-dominated vegetation (Fig-
ure 1b), with significant positive turnover in woodlands between 
6750 and 6000 cal. yr BP (Figure 3). No event sequences with fire 
regime shifts leading to turnover events were observed during this 
period. However, pre-turnover fire peaks might indicate that indi-
vidual fire episodes rather than fire shifts were driving turnover 
(Figure 3).

With positive turnover in oak woodlands, turnover in the non-
forest component (Figure 1c) also increased and arboreal pollen 
declined (Figure 1d). Hence, increasing fire at MH sites is accom-
panied by increasing woodland diversity while woodland cover 
(biomass) was decreasing. This pattern is more consistent with an 
anthropogenic fire regime (i.e. land-use controlled) than one gov-
erned by climate–fuel linkages (i.e. biomass controlled; Marlon 
et  al., 2006; Pausas and Fernández-Muñoz, 2012). A regional-
scale climatic explanation is difficult to justify given the stag-
gered timing of the woodland diversity maximum, its occurrence 
in diverse bioclimatic zones (Figure 1 and Supplemental Material 
Figure S5, available online) during a climatic phase of high lake 
levels and mesophyte expansion (Aranbarri et al., 2014; Fletcher 
and Zielhofer, 2013).

These fire–turnover patterns are perhaps best explained by 
manipulation of woodlands to create semi-open agro-silvo-pasto-
ral landscapes. These landscapes harbour the most biodiverse 
Mediterranean ecosystems and have a cultural heritage stretching 
back millennia (Blondel and Aronson, 1995; Colombaroli and 
Tinner, 2013; Stevenson and Harrison, 1992; Zamora et al., 2007). 
Most of the sites that experienced mid-Holocene fire and turnover 
increases are located near Neolithic settlements (BAN: Revelles 
et al., 2015; CAS: Ejarque et al., 2016; GAD: Carrión et al., 2003; 
NAV: Carrión and van Geel, 1999).

Neolithic settlements in the Western Mediterranean were pref-
erentially located in semi-open vegetation (Battentier et al., 2018; 
Carrión and van Geel, 1999; Ejarque et al., 2010; Revelles et al., 
2015), with settlement cores surrounded by extensive areas used 
for animal husbandry and exploitation of natural resources (Gar-
cía Puchol et al., 2009). Creation of new semi-open landscapes 
accompanied Neolithic expansion in lowlands and mountain Ibe-
rian areas (Aranbarri et  al., 2015; Ejarque et  al., 2010; Orengo 
et al., 2014). Neolithic settlers apparently avoided already popu-
lated areas (Aubán et al., 2015; Zilhão, 2001), although in some 
places preexisting Mesolithic communities may have assimilated 
Neolithic cultural elements (Bicho, 2009; García Puchol et  al., 
2009). The divergent fire histories in the MH and LH groups 
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around 7500 cal. yr BP (Figure 3) could represent the gradual 
decline of Mesolithic fires in areas that were avoided by Neolithic 
settlers (LH) and/or the assimilation of Neolithic practices (MH). 
Hunter-gatherers use fire differently to farmers, often targeting 
landscapes already prone to lightning-strike fires (Coughlan 
et al., 2018).

A growing number of palaeoecological records indicates Neo-
lithic impacts on Mediterranean vegetation as early as 7500 cal. 
yr BP, through tree felling (Revelles et al., 2015), arboriculture 
and cereal agriculture (Tinner et  al., 2009) and altering fire 
regimes (Colombaroli et al., 2008; Kaltenrieder et al., 2010; Snit-
ker, 2018; Vannière et al., 2016).On the Iberian Peninsula, Neo-
lithic populations were distributed from the coastal lowlands and 
inland plains up to elevations of 2600 m in the Pyrenees, locally 
exploiting a wide range of wild and domesticated resources (Gas-
siot Ballbè et al., 2015; González-Sampériz et al., 2017; Montes 
et al., 2016; Oms et al., 2018; Orengo et al., 2014). These impacts 
would have varied spatially according to the distribution of 
resources and the susceptibility of the vegetation to fire–vegeta-
tion feedbacks, as well as temporally according to changing 
socio-economic, climatic and cultural drivers.

The subtlety of Neolithic impacts in pollen diagrams may be 
illusory, merely reflecting biases in pollen site size and selection 
(Chapman, 2017) or pollen’s reduced capacity to detect culti-
vated plants compared with other proxies (e.g. Peña-Chocarro 
et  al., 2018; Poher et  al., 2017; Schneider et  al., 2016). For 
example, abundant pollen and macrofossils attest to the cultiva-
tion and processing of cereals at La Draga, a major Neolithic 
site on the shores of Lake Banyoles (BAN; Antolín et al., 2015; 
Bosch et  al., 2000; Revelles et  al., 2017), yet cereal pollen 
scarcely appears in the lake sediments of the same period (Revelles 
et al., 2015).

Some of the site-specific differences in fire and turnover only 
make sense in the light of archaeological evidence. Exploitation 
of oak (Quercus) timber for construction at La Draga caused local 
deforestation (López-Bultó and Piqué Huerta, 2018; Revelles 
et al., 2015), explaining why fire was not implicated in early-Neo-
lithic turnover at BAN. Around Navarrés in SE Iberia, fire models 
coupled with archaeological surveys suggest early-Neolithic 
communities used fire to create and maintain semi-open maquis 
vegetation for grazing (Snitker, 2018), corroborating the spike in 
fire and grazing indicators at NAV (Carrión and van Geel, 1999). 
The combined use of pollen, non-pollen palynomorphs and char-
coal analyses, together with integrated archaeological and multi-
site palaeoenvironmental analyses, can significantly overcome 
traditional pollen-analytical  limitations to detect both mobile and 
spatially limited prehistoric cropping and grazing practices in the 
palaeoenvironmental record (Ejarque et al., 2010; Garcés-Pastor 
et al., 2017).

Late-Holocene turnover in open vegetation.  Subregional fire his-
tories (Figure 3) suggest there was little change in biomass burn-
ing trends through the Neolithic and into the Chalcolithic. This 
continuity began to break down around 4500 cal. yr BP, a period 
of changing settlement distribution on the Iberian Peninsula. Pop-
ulations are thought to have deserted SW Iberia, while expanding 
in the SE, NE and Meseta zones (Blanco-González et al., 2018; 
Fyfe et al., 2019; Lillios et al., 2016). This demographic shift may 
explain negative turnover in oak woodlands and open vegetation 
in the SW (RFT), while turnover was positive for both at sites in 
the SE (BAZ, LRS, VIL) (Figure 1b). The significant occurrence 
of negative fire shifts in this period (Figure 3) appears to be linked 
to declining biomass on a regional scale, suggested by rising open 
vegetation diversity and falling arboreal pollen in most records 
(Figure 1c and d).

The Bronze and Iron Ages brought a reorganisation of Ibe-
rian landscapes and fire regimes. Subregional fire trends (MH 

and LH groups) began to diverge once again (Figure 3). Forest 
cover experienced a regional decline (Figure 1c), prompting the 
first significant episode of open vegetation turnover across the 
region (Figure 3) apart from the pinewoods of the northern 
Meseta (ESC, TUL). Positive turnover in open vegetation is 
closely aligned with the late Bronze Age increase in fire (Figure 
3). Indicators of human activity rose steadily (Figure 3), track-
ing the spread of human influence across the Iberian Peninsula, 
particularly at mid–high elevations (see Figure 11 in Carrión 
et al., 2010).

A threshold was reached around 2000 cal. yr BP, when fire 
peaked, turnover in woodland was negative, turnover in open 
vegetation was positive and richness increased rapidly at many 
sites (Figures 1 and 3). Similar changes are recorded in Sicily 
(Calò et  al., 2012; Tinner et  al., 2009) and reflect land-use 
change as territories fell under Rome’s globalising influence. 
More recent history has seen the decline of biomass burning in 
the LH group, following closely the reduction in fuel indicated 
by arboreal pollen and open vegetation turnover (Figure 1). 
Intensification of anthropogenic pressure and landscape 
homogenisation across Mediterranean Iberia drove significant 
negative turnover in both oak woodland and open vegetation 
(Figure 3), a process that appears to be continuing more 
recently (Figure 3).

We do not wish to argue that climatic changes, soil develop-
ment and other processes had no impact on Mediterranean Ibe-
ria’s vegetation diversity patterns (see Allen, 2001; Carrión et al., 
2010; Keeley et al., 2012). At the subcontinental scale, the diver-
gent subregional patterns identified here would likely blend into a 
background dominated by climatic drivers (see Dietze et  al., 
2018). Iberia’s vegetation history is replete with surprises, para-
doxes and exceptions (Carrión et al., 2001, 2007, 2010), so we do 
not expect the same fire–turnover patterns in every record. We 
merely suggest that turnover in the Mediterranean Iberian records 
considered here can be parsimoniously explained by the spread of 
human influence from early-Neolithic centres to more marginal 
sites over some 7500 years. This spatiotemporal pattern is unre-
lated to regional-scale climatic reconstructions based on vegeta-
tion-independent palaeoclimatic proxies (Aranbarri et al., 2014; 
Morellón et  al., 2018; Roberts et  al., 2011). Even so, humans 
undoubtedly tracked changes in climate and vegetation composi-
tion across the landscape, deciding where to farm, where to graze 
and where to burn to make the best of environmental opportuni-
ties (Walsh, 2014).

Our analysis provides a new perspective on Mediterranean 
environmental history. We see two waves of vegetation modifica-
tion spreading across the landscape – one wave promoting wood-
land diversity (e.g. wooded agro-pastoral landscapes) and a 
second promoting non-forest diversity (e.g. open agro-pastoral 
landscapes). The first wave was likely accelerated by Neolithic 
populations and the second propagated by Bronze, Iron Age and 
Roman populations. These waves arrived earliest in the most fer-
tile coastal lowlands and spread to encompass most of Mediter-
ranean Iberia, propelled by population movements and the 
progressive exploitation of marginal territories.

Conclusion
This detailed study of Mediterranean Iberian turnover trends 
and fire history allows conventional proxies to be seen in a new 
light. The progression of high-diversity semi-open landscapes 
in Mediterranean Iberia follows a course that can be explained 
by human activities at many of the studied sites. We suggest  
that Neolithic impacts have probably been underestimated in the 
palaeoenvironmental record because of biases in pollen site selec-
tion, pollen production and preconceptions about prehistoric 
human agency (Chapman, 2017; Head, 2008; Walsh, 2014).
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Our results implicate humans in the creation and maintenance 
of diverse vegetation mosaics, supporting recent studies that 
invoke human-driven vegetation change since the Neolithic in 
parts of the Iberian Peninsula (Carracedo et  al., 2018; Ejarque 
et al., 2010; Fyfe et al., 2019) and across Europe (Colombaroli 
and Tinner, 2013; Dietze et al., 2018; Molinari et al., 2013; Van-
nière et al., 2016). In Iberia, human influence on the vegetation 
spread upwards and outwards from Neolithic centres during sub-
sequent archaeological periods. Landscape transformation inten-
sified around 5500 to 5000 cal. yr BP and received a final kick 
during the last two millennia, accelerating the spread of open veg-
etation and the loss of woodland diversity on a regional scale. Fire 
regime change was found to play a statistically significant role in 
initiating turnover events in Mediterranean Iberian pollen records 
during the mid–late Holocene.

Present-day landscapes in Iberia cannot be understood without 
considering the deep and cumulative effects of Neolithic, Bronze, 
Iron Age, Roman and especially more recent activities, both on 
terrestrial and aquatic systems (Carrión et  al., 2010; Delgado 
et al., 2012). Any attempt to return Mediterranean Iberia’s vegeta-
tion to an assumed ‘natural’ state will be swimming against the 
tide of millennia of dedicated human labour.

Management of Mediterranean biodiversity and fire regimes 
should consider not only recent fire history (Puerta-Piñero et al., 
2012) but also the long-term legacies of prehistoric and historical-
era landscape transformations (Colombaroli et al., 2013; Morales-
Molino et al., 2017b; Vannière et al., 2016; Whitlock et al., 2018). 
Biodiversity conservation in ancient cultural landscapes requires 
active management using traditional practices and local knowl-
edge. Mediterranean landscapes should be treated as living biodi-
versity heritage, with a human lineage perhaps as long as 
civilisation itself.

There is enormous scope to improve our understanding of 
how prehistoric landscape transformations were achieved and 
how they played out in different environmental zones. Perry 
et al. (2012) modelled the relative regional contributions of cli-
mate, topography, humans and soils to fire-driven forest loss in 
New Zealand, showing that even small human populations may 
cause an irreversible shift towards more fire-prone vegetation on 
a regional scale. This kind of modelling approach could be pro-
ductively applied in the Mediterranean. In tandem, pollen-based 
vegetation models (e.g. Mariani et  al., 2017), new proxies for 
human activity (e.g. Poher et  al., 2017), contiguously sampled 
fire histories (e.g. Morales-Molino et al., 2017b; Vannière et al., 
2008) and robust palaeoclimatic reconstructions are needed if we 
are to truly understand the drivers of long-term biodiversity 
change.
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